On generators of C0-semigroups of composition operators
نویسندگان
چکیده
منابع مشابه
C0-semigroups of linear operators on some ultrametric Banach spaces
C0-semigroups of linear operators play a crucial role in the solvability of evolution equations in the classical context. This paper is concerned with a brief conceptualization of C0-semigroups on (ultrametric) free Banach spaces E. In contrast with the classical setting, the parameter of a given C0-semigroup belongs to a clopen ball Ωr of the ground field K. As an illustration, we will discuss...
متن کاملOn C0-Group of Linear Operators
In this paper we consider C0-group of unitary operators on a Hilbert C*-module E. In particular we show that if A?L(E) be a C*-algebra including K(E) and ?t a C0-group of *-automorphisms on A, such that there is x?E with =1 and ?t (?x,x) = ?x,x t?R, then there is a C0-group ut of unitaries in L(E) such that ?t(a) = ut a ut*.
متن کاملHolomorphic families of forms, operators and C0-semigroups
If z 7→ az is a holomorphic function with values in the sectorial forms in a Hilbert space, then the associated operator valued function z 7→ Az is resolvent holomorphic. We give a proof of this result of Kato, on the basis of the Lax-Milgram lemma. We also show that the C0-semigroups Tz generated by −Az depend holomorphically on z. MSC 2010: 47A07, 47B44, 47D06
متن کاملMean Ergodic Theorems for C0 Semigroups of Continuous Linear Operators
In this paper we obtained mean ergodic theorems for semigroups of bounded linear or continuous affine linear operators on a Banach space under non-power bounded conditions. We then apply them to the wave equation and the system of elasticity to show that the mean of their solutions converges to their equilibriums.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Israel Journal of Mathematics
سال: 2019
ISSN: 0021-2172,1565-8511
DOI: 10.1007/s11856-018-1815-9